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When a train of gravity waves encounters an opposing current, the wavelength is 
shortened and the waves may be reflected. If capillarity is included, the shortened 
waves may be reflected for a second time and experience further shortening. By this 
process the initially long gravity waves can be damped by viscosity quickly without 
breaking. In this paper a boundary-layer approximation is obtained close to the 
reflection points, and is matched to the ray approximations outside. This is then 
applied to the propagation of a wavepacket. Damping is accounted for in the ray 
solution and the result is compared to the undamped solution. The case where the two 
reflection points coalesce is also considered. It is found that as the separation between 
the reflection points decreases, the wavepacket appears to remain longer in the region 
of reflections relative to the width of this region. 

1. Introduction 
The evolution of short surface waves on a variable current or a long wave is 

important to the understanding of sea wave spectra, and to the proper interpretation 
of remote sensing records obtained by satellite. Modem theories on the dynamics of 
infinitesimal short gravity waves on longer waves or slowly varying currents was begun 
by Longuet-Higgins & Stewart (1960, 1961) and Bretherton & Garrett (1968). For 
cases without reflection, the short-wave envelope is known to obey the law of wave- 
action conservation. A more recent account, using a Hamiltonian formulation, can be 
found in Henyey et al. (1988), for the evolution of short gravity/capillary waves on 
two-dimensional long waves. Partial reflection of gravity waves by an opposing current 
was studied by Stiassnie & Dagan (1979). An asymptotic theory uniformly valid near 
and away from the reflection point has been given by Smith (1975) for pure gravity 
waves. While blocking (or reflection) of capillary waves by currents or long waves of 
finite amplitude has been anticipated by Phillips (1981), Shyu & Phillips (1990) have 
recently reported a more detailed linear analysis of the phenomenon near and away 
from the point of reflection (the simple turning point), by extending the work of Smith 
(1975) to include capillary effects. They first reduced the free-surface boundary 
condition to a third-order ordinary differential equation, which was factored and 
reduced further to the second-order Airy equation near a reflection point. The effects 
of viscosity were discussed in general terms. 

Wave reflection on non-uniform currents is of great physical interest since it is 
accompanied by drastic shortening of wavelength, as a result of the combined influence 
of capillarity, gravity and current. The role of viscous dissipation can hence be greatly 
amplified, such that short waves can be completely damped out without the help of 
breaking (Phillips 1981). This phenomenon of shortening has been observed in 
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FIGURE 1. Geometry of the flow. 

laboratory experiments. Specifically, Pokazeyev & Rozenberg (1983) conducted 
experiments for short waves on a weak current with speed between 4 and 21 cm/s over 
a sloping bottom. Packets of three to ten waves with central frequencies in the range 
of 2-1 1 Hz were sent towards an opposing current. Although they did not focus their 
attention on reflection, one of their experiments for waves of frequency 2 Hz showed 
double reflection and rapid spatial variation of wavelengths and amplitudes. The 
transmitted waves were found to be strongly attenuated. In a later experiment, 
Badulin, Pokazeyev & Rozenberg (1983) increased the opposing current speed to 
U < 30 cm/s and reduced the central frequency of the wavepackets to the range 
1.5-3 Hz. Their attention was here on the propagation through the regions of 
reflection. They observed double reflection, accompanied by a drastic reduction of 
wavelength and amplitude attenuation. In these experiments, the separations between 
the two reflection points are typically not much greater than the local wavelengths. 

The phenomenon of double reflection and drastic reduction of wavelength is best 
seen from the dispersion relation : 

( w - k -  U)2  = gk+Tk3 = cr2. 
P 

Here is the intrinsic frequency, w the absolute frequency, k the wavenumber vector, 
k its absolute magnitude lkl, U the horizontal current velocity vector, g the 
gravitational acceleration, T the surface tension between water and air, and p the 
density of water. In the general case where the wave and the current are not in the same 
or opposite directions, the large variety of physical possibilities implied by (1.1) has 
been discussed by Basovich & Talanov (1977). Restricting our consideration to the 
collinear case for simplicity, we shall recapitulate some of the possible scenarios. 
Throughout the following we shall assume that the current flows from right to left 
towards increasing depth, see figure 1. The following cases can be distinguished. 

Case 1 .  k = -k2, i.e. k -  U > 0. Two branches exist for the square root in (1.1). 
(a) Positive branch : 

cr = w-lklIUI = (gk+$k3):. 

Since the intrinsic group velocity cg = da/dk > 0, a long wave with crests propagating 
downstream will have its energy swept downstream. As the current gets weaker, the 
wavelength becomes shorter. There can be no reflection. 

(b) Negative branch : 
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FIGURE 2. Case 2a. Graphic solution of dispersion relation and resulting wave, w > wo. 

k 
FIGURE 3. Case 26. Graphic solution of dispersion relation and resulting wave, w < wo. 

In general there can be two wave trains, a longer wave propagating downstream and 
a shorter wave propagating upstream. As the current speed diminishes, the two waves 
coalesce to one; no downstream wave can exist for a weaker current. At the critical 
current intensity, energy is reflected upstream. This wave cannot exist on still water. 

Case 2. k = k2, i.e. k- U < 0. Only the positive branch for the square root can be 
taken : 

Referring to figure 2 we define wo to be the intersection of the frequency axis and the 
tangent to the intrinsic frequency curve at the inflexion point. There are two subcases. 

(a) w > wo. For any (UI there is only one solution, as shown in figure 2. Because 
dwldk > 0, a long wave propagating upstream will have its energy swept upstream. 
Since k increases with IUl the wavelength is shortened as the crests advance into a 
stronger opposing current. 

(b) w < w,,. For U, < IVl < U, three waves are possible for the same frequency, as 
shown in figure 3. A long wave originating downstream with wavenumber vector 
pointing upstream can be reflected twice at two different reflection points where 
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FIGURE 4. Wavenumber (m-') and wavelength (m) as a function of leftbound current velocity (m/s) 
for selected frequencies as shown. The solid lines show gravity/capillary theory, the broken lines 
show gravity theory without capillarity. 

IUl = U, and ]Ul = U,. The wavenumber vector always points upstream, while the 
wave energy is first swept upstream, then downstream, and finally upstream. 
Throughout this process the continuous shortening of the wavelength can be so drastic 
that fairly long gravity waves can be transformed into a train of capillary waves which 
are then damped without any breaking. 

In the limiting case of w+wo, the two reflection points coalesce to one. We denote 
this as a triple turning point, to distinguish it from an ordinary turning point (or a 
reflection point). In physical dimensions achievable in the laboratory, solution curves 
of the dispersion relation for various frequencies and a given non-uniform current, are 
illustrated in figure 4. 

In principle the theory of Shyu & Phillips (1990)t can be applied to the phenomenon 
of repeated reflections, if the reflection points are sufficiently far apart. In this paper, 
we wish to give an alternative theory, using a boundary-layer approach, for the 
repeated reflection of a packet of capillary-gravity waves on a non-uniform current by 
two well-separated reflection (blockage) points. Our main goal is however to extend the 
boundary-layer approach to the case where the two reflection points coalesce. Recent 
results by Paris (1991) on the Pearcey integral with complex parameters, will be used. 

2. Scaling assumptions 
Dividing (1.1) by w, we get 

where c = w/k is the phase velocity of the wave. In order to deal with a wide range of 
wavelengths, we shall keep all three physical factors : gravity, capillarity and current. 

t It is being applied by Yiqiang Zhang & 0. M. Phillips (private communication) to related 
problems in gravity waves. 
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Mathematically this is done by formally allowing that gk/w2, (T/p)kS/w2 and U / c  are 
all O(1). Since U / c  - (g /A) f / c  - (kA)f ,  where A denotes the scale for the current set- 
down, it follows that kA - O( 1 ) .  

In many practical situations, current variations are accompanied by variations in 
depth. Let the depth and horizontal lengthscales be Hand L, respectively, and assume 

L 

where 8 defined by 8 = (kL)-i (2.3) 

is a small parameter. Hence the waves are on deep water, and variations in depth have 
a direct influence only on the current field. 

Although the wavenumber varies widely, we shall choose that of the incident gravity 
wave as the characteristic wavenumber, i.e. k = iij2/g. By this choice the actual ratio 
between the wave and current scales is never larger than l / k L  = e2. 

Let the short-wave amplitude be characterized-by a. The steepness ka is assumed to 
be so small that nonlinearity is unimportant over the propagation distance of O(L). 
From existing theory of slowly varying waves, it is known that nonlinearity is not 
important over the distance O( l /k(ka)) ,  but will be important over O( 1 /k(ka)2). 
Therefore we shall assume 

ka - O(e2). (2-4) 

Under these assumptions, it is convenient to employ multiple scale coordinates. For 
the waves the dimensional coordinates are (x ,  2, t), while for the current they are 
(x2 = e2x, z1 = a). Explicit expressions for an almost irrotational current over known 
bathymetry can easily be derived. However, the theory for the short waves is derived 
below by assuming that the current field is known a priori. 

3. Approximate equations for the short wave 
With an asterisk designating a physical variable, we let the velocity potential of the 

wave be #* and the wave-induced free-surface displacement be q*. For the current the 
velocity components are denoted by (U*, W*) while the free-surface set-down is [*. 
The total velocity field is then 

while the total displacement of the free surface is r + q*. 
Let G be the central frequency of the incident gravity wave from deep water, and 
= 0 2 / g .  We introduce the following normalizations for the current field: 

x2 = e2kx*, z1 = EL*, h = &h*, (3.1) 

1 
[ = kr, u = (k /g)b* ,  w = -(fF/g)W*. 

8 

The following normalized variables are introduced for the short-wave field: 

x = EX*, z = Ez*, t = Gt*, K = k*/E, (3.3) 

q = (k/2))*, # = (fE/s2)(k/g)i#*. (3.4) 
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Assuming irrotationality, the dimensionless Laplace equation governing the wave 
field is 

The boundary condition on the bottom is 

On the free surface z = [+~'T,I, the kinematic condition for the total field reads 

(3.6) 

while the dynamic condition reads 

The following dimensionless quantity signifying surface tension has been introduced : 

We now Taylor-expand the free-surface conditions about the current set-down 
z = 6. Note that the current-related quantities are evaluated at z1 = c[+ e39, while wave- 
related quantities are evaluated at z = [+€,?. Let the current be weakly irrotational, 
such that 

then 

au aw 
--c2- < O(€,), 
aZ, ax, 

(3.10) 

From the kinematic surface condition and the mass conservation equation for the 
current, we get 

The wave velocity potential becomes 

(3.12) 

(3.13) 

Note that in the surface conditions, differentiation must be performed first, before their 
values are evaluated on the surface. Thus, horizontal and time derivatives of q5 must 
be taken before expansion about the current set-down. 
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After Taylor expansion, the kinematic free-surface condition becomes 

(3.14) 
Similarly, the dynamic free-surface condition is 

In summary, the short wave satisfies (3.5) in the fluid, (3.6) on the bottom and (3.14) 
and (3.15) on the curved surface z = y(x,). Next, we shall seek information regarding 
the evolution of a slowly varying wavetrain which is proportional to expi(Kx- t) .  The 
terms linear in + or 7 will contain this harmonic while the quadratic terms at O(s2) will 
give rise to zeroth and second harmonics. Hence the quadratic terms do not affect the 
first harmonic at order O(e2). 

The linear wave solution is expected to attenuate exponentially in z ,  hence the fluid 
domain is well approximated by - m < z < 5 and the bottom condition may be 
replaced by 

a+/az+o as z-+--oo. (3.16) 

4. Ray approximation for short waves away from points of reflection 
In this section we present a ray approximation for waves far away from the reflection 

points. In principle, the results can be inferred from Shyu & Phillips (1990) and Henyey 
et al. (1988). Since the horizontal variation of the current has been assumed to have the 
characteristic scale O(s2x), it is natural to assume that the resulting modulation of the 
waves will be on the scales x, = e2x and t ,  = e2t. First, we replace all x and t by x, and 
t ,  so that 

3=0 for z-t-m, 
aZ 

where h.0.t. represents higher-order terms. 
We now assume WKB-expansions of the form 

} (4.5) 
+ = ( A  + e2A, + . . .) exp (ie-,S) + €,(other harmonics) + c.c., 

= (B+ e2B, + . . .) exp (is-,S) + €,(other harmonics) + c.c., 

where C.C. denotes complex conjugate and 

aslax, = K and aSlat, = - 1. (4.6) 
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FIGURE 5. Sketch of the different regions of the wave development. 

At the lowest order, O( l), the problem is governed by 

a2A/az2-K2A = 0 for -a c z c (5, (4.7) 
aA/az = 0 at z+--co, (4.8) 

-iB+iKUB-aA/az = 0 at z = 5, (4.9) 
-iA+iKUA+B+TK2B=0 at z=[.  (4.10) 

The last two conditions can be combined to 

A = 0, 
aA K( 1 - KU), 
a Z  v2 
-- (4.1 1) 

where a = (K+TK3)i (4.12) 

represents the intrinsic frequency of the wave. 
We shall take the solution to be 

(4.13) 
i a  
K 

A = -- BeK('-O, where B = B(x,, t,). 

It readily follows that K(x,) is the solution of the dispersion relation 

1 - KU = (K+TK3)i or TK3- U2K2+(2U+ 1) K- 1 = 0. (4.14a, b) 

Equation (4.14b) is a cubic equation for K with real coefficients. For a fixed r, K 
follows one of the curves in figure 4, which is plotted in physical variables and 
contrasted with a theory discounting surface tension. Assume that V(x,) varies 
monotonically in x,. There are in general three real or one real and two complex- 
conjugate solutions, K(l), K',) and K(3). With reference to figure 5,  we divide the 
physical domain into five parts. In region I there is only one incident long wave 
(KC'), P), while in region I11 there is only one outgoing short wave (K(3), B(3)). In 
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region I1 there can be three waves. The most general expression for the wave surface 
displacement is then 

exp (- ie-,t,) + c.c. (4.15) 
n-1 

Leaving the neighbourhoods of the isolated turning points IV and V to the next 
section, we first determine the amplitude B, the generic symbol for B"), B(,) and H3). 

The second-order problem, O(e2), is 

a2A, a CIA 
K2A, = -i-(KA)-iK- for -a < z < [, -- 

a 2 2  3x2 ax, 
(4.16) 

aA,/az = 0 at z + - a ,  (4.17) 

at z = 6. (4.19) 
The last two equations can be combined by eliminating B,, and the first-order result 
can further be used to substitute for A. The resulting surface condition is 

aB aB a[ aU -- aA2 KA, = ~-+U-+IJ-B+-B 
a Z  at, ax, ax, ax, 

. (4.20) TK2 aB 

The problem for A, is seen to be an inhomogeneous version of the homogeneous 
problem for A. Therefore A, must satisfy a condition of solvability, which follows by 
Green's theorem, 

I " _ , d z [ A ~ ~ - K 2 A 2 ) - - A , ( ! ~ - K 2 A ) ]  = [.$-A,Er aZ -m . (4.21) 

After substituting (4.16H4.20) into this condition, we get the following condition 
for B: 

Let us introduce the intrinsic group velocity 

so that we get 

This is the conservation law for wave action 

(4.22) 

(4.23) 

(4.24) 

' { E ( c g +  ax, u u)}+&{;} = 0, (4.25) 
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where E = pa2B2/2K is the total energy. This equation has been deduced in similar 
contexts by Bretherton & Garrett (1968), Henyey et al. (1988) and Shyu & Phillips 
(1 990). 

As an application, we now seek a solution representing a wavepacket. Recall that 
cg, U, K and Q are all independent of time. Upon multiplication of (4.24) by cg+ U, 
and introduction of + = (cg + U) uB2/K, we write 

It follows that + is constant along the characteristic curve 

where X and T are some reference values. Hence the solution for B becomes 

B(x2, t2 )  = b ( t2- s' - d x 2 ) (  K )t 
x c,+u u(c,+V) ' 

where b is the time-dependent boundary value of B at x, = X, 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

Note that the solution breaks down at turning points where C, = - U. To further 
examine its behaviour near the turning points, we rewrite the above square root as 

1 
lu2/2K2+uU/K+I'K 

(4.30) 

Now the dispersion relation (4.14b) can be written in the form 

T ( K -  K('))(K- K'")(K- K'") = 0, (4.3 1) 

where K") < K(2)  < K@) denote the three (real) roots. It is clear that 
l/r = K(')K(2)K(3) and U2/T = K(') + K(') + K(3) .  Let us further assume, for illustra- 
tion, that the wavenumber under consideration is K = K@), corresponding to 
B'2)(x2). We then get from (4.30) 

(4.32) 

It is clear that the ray theory solution is valid as long as K(') += K(2)  += K('), and breaks 
down at the points where the dispersion has a double root, K(') = P2) or K(2) = K(3), 
or a triple root, K") = KC2) = K @ ) .  The asymptotic behaviour of the amplitude near 
such points will depend on the multiplicity of the roots, as discussed separately in 
subsequent sections. 

5. Inner solution near a simple turning point 
In this section we shall rederive the theory of Shyu & Phillips by matched 

asymptotics for an isolated turning point and apply the results to the case with two well 
separated turning points. 



Double reflection of capillarylgravity waves 249 

Let us consider the neighbourhood of a simple turning point at x, = xo where there 
is a double root for the wavenumber, K = KO- Thus two solution branches B+ and B-, 
with their respective wavenumbers K+ and K-,  converge to KO at the turning point. In 
the following, we shall let indices - and + denote the longer and shorter waves, 
respectively, such that K- < K+.  With this general convention, the theory is equally 
valid in both regions IV and V in figure 5. 

Let us shift the origin by 1 = x2-xo, and expand the current field in local 
expansions. We begin by noting that the current set-down can be expanded as 

(5-  1) 

where f = 5 and 5, = alJax,, both evaluated at x, = xo. The surface horizontal current 
can then be expanded as 

t;(x,) = 5, + %-I+ 0(Z2), 

au au 
ax* a21 

U(X,) = uo + 1 - + €16, - + 0(9), 

where the terms on the right-hand side are evaluated at z, = ec0 and x2 = xo. Owing to 
the assumption that the current has weak vorticity, 

au aw 
- - g2 - < 0(€2), a ~ ,  ax, ( 5 . 3 )  

we have dUlaz, = O(e2). If we define U,  = aU/ax, at x2 = xo,z, = ec0, the expansion 
for the surface horizontal current is 

U(X,) = U0+1U,+O(x'2,€31). (5.4) 

Suppose that the wavenumber behaves as K = KO+ R ( i )  for small 5, where 
R(1)  = o( 1). Substituting these expansions into the dispersion relation ( 4 . 1 4 4 ,  and 
expanding for small 1, we get 

(5.5) 

where go = (KO + rKi)gI and use has been made of the fact that cg = j a / d K  = - U at 
1 = 0. Clearly, the leading asymptotic behaviour for small 1 is R - xg. Consequently, 
the wavenumber can be expanded in half-powers of 1, 

R2(3rKo-  U i ) +  R 3 r + 2 U 1  K O ~ , 1  = O(1R),  

K - Ko+or$+/31, (5.6) 

Substitution of expansions (5.4) and (5.6) for U and K into (4.28) gives the inner 
approximation of the outer (ray) solution near the turning point, 

K* t 
B*(x',t,) = b * ( f , - l f  ** z)( c,'+ u + U )  ) 

where b- and b, are the complex amplitudes of the incident and reflected waves, 
respectively, on the incidence side of the reflection point, and 1, - are the starting points 
for the time and phase integrals. 

-. .. O.. 
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attenuated in 2, and need not be taken into account for the present purposes. 

at this order can be seen to be 

K.  Trulsen and C. C. Mei 

The evanescent modes on the opposite side of the reflection point are exponentially 

From the inhomogeneous Laplace equation at O(E'), (4.16), the dominant behaviour 

(5.9) 

Therefore the surface displacement on the incidence side of the singularity can be 
expanded as 

A: rv B: hl o(2-n). 

~ ( f ,  t,) = B- exp is-, K -  d f  - t, + B+ exp is-, K+ d i  - t ,  + O(s2) ( [I- I) ( K+ I) 
I) rv 1 -- a I' Ifl-i{ b- [ t ,  - z] exp ( ic-2 [ l- K d x  + KO f-$lafgl 

+ b,  (t, - *) exp (is-' [ c, K+ d f  + KO x' + :(afil 

2ao u, 2- c,+ u 

f ,  c; + u 
(5.10) 

Higher powers of f from B' will give contributions of O ( d ) ,  while the O(E,) terms will 
give contributions of O(2i-n). Hence this one-term asymptotic expansion for the 
amplitude of the outer solution is valid for e2 G 121 G 1. 

We now examine the neighbourhood of the singularity, i.e. the inner region. Let us 
expand the velocity potential at the surface about the current set-down, which is at the 
constant height lo, 

(5.11) 

Once again, horizontal derivatives of # must be taken before the expansion, which 
should not be differentiated with respect to f. The kinematic and dynamic surface 
conditions (3.14) and (3.15) become 

(5.12) 

In the neighbourhood of a simple turning point, i.e. the inner region, we expect the 
spatial dependence of the amplitude to be governed by an Airy differential equation of 
the form 

(5.14) 

The boundary-layer thickness must then be f = O(e:). The local characteristic 
timescale for this inner region is the time for energy to pass through at  the propagation 
speed c,+ U - 2: is 

(5.15) 
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If transients are important in this inner region, the space and time coordinates for the 
inner problem must be renormalized by 

E = e - k  and 7 = e-ftz, ( 5 . 1 6 ~ ~  b) 

which is adopted here for generality. The governing equations (3.5H3.8) can be 
rewritten as follows : 

(5.17) 

_ -  - 0  for z+-oc), (5.18) 
a Z  

Higher powers in E have been incorporated in h.0.t. 
Let us assume a solution of the WKB-type 

+ = (A+$A,+e;A2+ ...) exp{i(e-gK,E-e-h)}+c.c., 
r] = (B+e:B,+$B,+. ..)exp{i(e-~Kot;-e-~)}+c.c. 

The lowest-order problem, O( l), is governed by 

a2A/azz-  Ki A = 0 for - 00 c z c coy 
aA/az+O at z - + - - c o ,  

-iB+iK, Uo B-aAIaz = 0 at z = co, 
- iA + i KO Uo A + B + I'K; B = 0 at z = co. 

We shall take as the solution 

icr 
A = - 2 B eKo('-L) with B = B(~,T)  

KO 

subject to the dispersion relation 

1-KoUo = (Ko+fK:)i. 
The problem at O(e9 is 

a 2 A , p z 2 -  Ki A ,  = -2iK, aA/at  for - oc) .c z < co, 
aA,/az = 0 at z+--oo, 

-iB,+ UoaB/ag+iKo U, B,-aA,/az  = 0 at z = go, 
aB 

Uo A, + B,-2iI'Ko-+fK~ B, = 0 at z = 6. 
36 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 
(5.25) 

(5.26) 

(5.27) 

(5.28) 
(5.29) 
(5.30) 

(5.3 I) 

The last two equations can be combined by eliminating B,, and the lowest-order result 
can further be used to substitute for A.  The resulting surface condition is 

(5.32) 
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In obtaining the last result, use has been made of the fact that at the reflection point, 

The problem for A, is seen to be an inhomogeneous version of the homogeneous 
problem for A. However, it is readily seen that the solvability condition is identically 
satisfied. We must therefore go to the next order to find a governing equation for A. 
Particular solutions for A, and B, can be found as 

c,+ uo = 0. 

and 

The problem at O(6) is 

a2A aA 
KiA, = - - -2iKo2 for -a < z < 6, 3 2  A, 

a22 at2 a t  
-- 

(5.33) 

(5.34) 

(5.35) 

CIA& = 0 at z+-w,  (5.36) 

c?B aB dA P A  
- - i B , + U o ~ + i K , U o B , + i ~ K o U , B - ~ - ~ ~ , - - ~ = O  at z =  c,, (5.37) a7 at a Z  ?Z 

a2B aB 
+ i ~ K o U , A + B , - T - - - - 2 i T K o ~ + T K ~ B , = 0  at z = c 0 .  (5.38) 

The last two equations can be combined by eliminating B,, and the previous lower- 
order results can further be used to substitute for A,, B, and A. The resulting surface 
condition is 

36' 

aB i a2B 
__- aA2 K,  A, = 27--$3TK0- U:]--+2iK0 U , t B .  
az a% (5.39) 

Both the dispersion relation (5.27) and the identity cg = - U, have been used. 

hence B must satisfy the following Schrodinger equation : 
The solvability condition for A, requires that the right-hand side of (5.39) vanishes, 

(5.40) 

Equation (5.40) applies to problems where transients are important in the boundary 
layer. 

For a slowly modulated incident wavepacket, described near the end of $4, the 
timescale of interest is t ,  = O( 1) which is much longer than that of the characteristic 
time of the inner region defined by (5.166). It is seen that if the modulation timescale 
is t ,  in (5.40), the inner region is approximately quasi-stationary. Consequently, (5.40) 
reduces to the ordinary Airy differential equation 

aZB/ap + a 2 ~ ~  = 0, (5.41) 

where the coefficient 01 is defined by (5.7). 
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The wave amplitude near the reflection point is 

B(6, f,) = bo(t2) Ai( - a@J, (5.42) 

where b,(t,) remains to be found. As $6 - 00, i.e. far away from the reflection point 
on the incidence side, the asymptotic behaviour is 

(5.43) B - b,(t,) [n-tlal-tl~l-f sin (+@1 +in) + o(6-31, 
and from (5.34), B, - O(&. (5.44) 

The corresponding asymptotic behaviour of the surface displacement, here expressed 
in terms of 2, is 

~ ( 2 ,  2,) - b,(t,) n-$zl-&flil-+ sin (@21a2il + :n) exp (ie-*[KO 2 - t2]) .  (5.45) 

This is the outer expansion of the inner solution. 
Higher powers of 2 from B give contributions of O ( E ; ~ - : ) ,  while terms from B, give 

contributions of O(ei2:). Therefore, this one-term asymptotic expansion is valid in the 
region es < 121 < 1. 

Both asymptotic expansions (5.10) and (5.45) have a common region of validity, 
6; 6 121 4 1. The relationship between the coefficients can now be found by asymptotic 
matching. The time-dependent coefficients of the ray solution, (5.10), are most easily 
evaluated at the time when the ray reaches the reflection point. Hence the time integrals 
in (5.10) are to be evaluated with the upper limit set to 2 = 0. This can be done because 
the errors introduced in the time and phase integrals are smaller than the accuracy of 
the asymptotic result. The results of matching are then 

(5.46) 

Both the inner and outer solutions are therefore determined. The theory is equally 
valid in either of regions IV and V in figure 5 ,  by a proper choice of solution branches 
of the dispersion relation. 

To summarize, the amplitude far from the reflection point is given by (5.10) while the 
solution at the reflection point is given by (5.42). A solution uniformly valid to the 
leading order with O(&) error can be obtained by adding the inner and outer solutions 
and subtracting the common asymptotic part in (5.45). 

Numerical examples will be discussed in 58. 
We remark that improved results including $(A1, B,) may be pursued in principle. 

On the other hand, by keeping just the leading order in the outer ray approximation, 
the error is O(e2) which is relatively small. 

6. Solution near a perfect triple turning point 
As shown in figure 4, for a sufficiently low wave frequency, there are two simple 

reflection points (double-roots of (4.14b)). For a sufficiently high frequency, there are 
no reflection points. Therefore, a triple-root point exists for some intermediate wave 
frequency, oo, where the two reflection points coalesce. We now assume the incident 
wave frequency to be precisely the critical frequency w = wo. 
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the perfect triple-root point : the dispersion relation 
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From (4.14a, b), the following three conditions must be satisfied simultaneously at 

& K ~ - U ~ K ~ + ( 2 U o + l ) K o - l  = O ;  (6.1) 
the condition for a reflection point du/dK = - U 

3 q  Ki-2Ui  K0+2U0+ 1 = 0; 

and the condition for a triple-root d2u/dK2 = 0 

34 KO- U,Z = 0. 

We have denoted the critical solution at the triple-root point by subscript zero. The 
solution to (6.1)-(6.3) is 

K 0 = 3 + 2 1 / 3 ,  4 = - 5 + ? 1 / 3 ,  U 0 = - 2 + v / 3 ,  u0= l+1 /3 .  (6.4) 

Recall that the dimensionless quantities (in capital letters KO, U,, r,) are related to the 
dimensional quantities (in small letters k,, uo, oo) by r, = Twt/@g3), KO = gko/wi  and 
U,  = wouo/g. For typical values g = 9.8 m/s2 and T / p  = 7.3 x m3/s2, the triple 
point occurs when the absolute frequency is 2.4 Hz, the wavelength is 4.4 cm and the 
current velocity is - 18 cm/s. 

Let us define the local, slow horizontal coordinate as 2 = x2-xo,  where xo is the 
location of the triple turning point. Let the current field be expanded as in $ 5 ,  

To find the asymptotic behaviour of the wavenumber, we substitute the surface 

(6.6) 
into the dispersion relation (4.14b). The resulting expressions can then be simplified by 
using the exact solution (6.4). 

current expansion (6.5) and the following expansion for the wavenumber, 

K = KO + R(2, E ) ,  

The equation governing the leading behaviour of the wavenumber is 

which suggests an asymptotic expansion in powers of $. We then assume 

R 3 4  + 2U, KO uo 2 = 0 ( 2 R ) ,  

K - KO + a$+ a, 2; + a3 2, 

(6.7) 

(6.8) 

2Ko uo u1 ' = [ - (4770 + 2754 1/3) U$, 
a = ( -  r, ) and determine 

-21 + 13 4 3  33-19 4 3 a 3  
18 

a', a3 = 
18 

a2 = (6.10) 

This expansion is asymptotically valid for 121 4 1 .  

behaviour for small 2, i.e. the inner expansion of the outer ray approximation, 
Substitution of the expansions for U and K into the ray solution (4.28), gives the 
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As before, we let indices - and + denote the longer incident wave from 1 < 0 and the 
shorter transmitted wave to 2 > 0, respectively. We also let 1+ - be the starting points 
for the time and phase integrals on either side. 

From the inhomogeneous Laplace equation at O(e2), (4.16), the dominant 1- 
behaviour of B; near 1 = 0 is 

A: * B: * O(1-i). (6.12) 

Therefore, the surface displacement on either side of the singularity can be expanded 
as 

7(&)(1,t2) = (B'*)+E2B:"+...)exp(iE-z[ Kdl-t ,  I1 +c.c. 
Zt 

xexp{it-'[ [ tKd1+Koi+@-t2 11 +c.c. (6.13) 

In this outer approximation, the singularity is more severe than for a simple reflection 
point. Moreover, the second term of the expansion (6.13) is non-vanishing as 1+0. 
Therefore, a satisfactory theory for the triple turning point will require at least a two- 
term expansion, so that the truncation error is asymptotically vanishing. 

In this case of a perfect triple root, it can be shown that the two-term inner expansion 
of the outer ray approximation is valid for & % 111 % 1 .  The one-term expansion is valid 
for a much larger region e2 % 111 % 1 .  

We next proceed to find the inner solution in the neighbourhood of the triple turning 
point, 1 = 0. An envelope equation is anticipated of the form 

€6 a 3 ~ / a ~  + ~ Z B  = o ; (6.14) 

the corresponding boundary-layer thickness is 1 = O ( E ~ ) .  Asymptotic evaluation of the 
energy propagation speed for the ray solution now gives cg+ U - 1;. Therefore, a 
characteristic time for energy to propagate through the inner region is 

(6.15) 

If transients are allowed in the inner region, the following boundary-layer coordinates 

(6.16 a, b) 
are appropriate : 

5 = ~ - : 2  and 7 = €-i t2 .  

The governing equations (3.5H3.8) can be rewritten as follows : 

E a2$/ag2 + a2$/az2 = 0 for - 00 < z < 6, (6.17) 

a$/az = 0 for Z-Z-m, (6.18) 

at z = 5,. (6.20) 
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The following WKB expansions are assumed : 

q5 = (A + €:A, + EA, + €$A3 + . . .) exp { i(E-iKo t - E%} + c.c., 
7 = (B+dB, +eB2+&B3+. . .)exp {i(sdK0 f;-~-b} +c.c. 

The problems at O(1) and O(d) are identical to the case of a simple reflection point, 
and therefore the solutions (5.26), (5.33) and (5.34) still hold. 

The O(E) problem is 

(6.22) 

aA,/az = 0 at ~ + - - 0 3 ,  (6.23) 

- iu, B, + U, aB,/ag- aA,/az = 0 at z = co, (6.24) 

aA a2 B aB 
-ia, A,+ U O L +  B2-G--2iT, KO>+& K: B, = 0 at z = co. (6.25) 

a t  36' a< 
The last two equations can be combined to eliminate B,, and the lower-order results 
can further be used to eliminate A, A ,  and B,. Making use of the exact values of KO, 
&, Uo and go, we arrive at the following surface condition: 

aA, /az -  KO A ,  = 0. (6.26) 

The solvability condition can again be shown to be identically satisfied. The particular 
solution at this order can be summarized as 

The problem at O ( E ~ )  is 

aA 
2 i K 0 L  for - co < z < 6, a2A1 K:A3 = a2A3 -- 

az2 at2 a t  

(6.27) 

(6.28) 

(6.29) 

aA3/az  = o at z+-co, (6.30) 

dB aA a2A 
--iao B3+ U o ~ + i K o  U ,  5 B - L - c  <- = 0 at z = co, (6.31) 
a7 ag aZ iw 

aA dA a2B aB 
- - iuoA3+ U o A + B 3 - G L - 2 i r  K 2 a7 a t  36' O O a t  

i3A 
+ T , K ~ ~ 3 + i K o U , < A - i ~ o ~ l < - = 0  aZ at z = c o .  (6.32) 

If the last two equations are combined to eliminate B3, and the lower-order results 
are used to eliminate A ,  A,, A, ,  B, and B,, we get the surface condition 

(6.33) 
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The solvability condition gives the following third-order partial differential equation 
governing the complex envelope B, 

+iK, U , [ B  = 0. 
aB & a3B 
ar 2g0 a 6 3  

(6.34) 

Employing the theory of averaged Lagrangian and including nonlinearities, 
Peregrine & Smith (1979) deduced formally a similar equation with a cubic nonlinearity. 
However, they did not work out the coefficients explicitly, and hence did not examine 
the physical implications in detail. 

For a slowly modulated incident wavepacket, described near the end of $4, the 
timescale of interest is t,  = 0(1), which is much longer than that of the characteristic 
time of the inner region defined by (6.16b). It is seen that if the modulation timescale is 
t ,  in (6.34), the inner region is approximately quasi-stationary. Consequently, the 
stationary limit of (6.34) reduces to the following Pearcey differential equation for the 
amplitude B: 

(6.35) 

The solution of this equation is a special case of the Pearcey function. With reference 
to Appendix A, the solution which is bounded as $+& a~ is 

B(E912) = b&,) P( n, (6.36) 

where P( Y) denotes the Pearcey function defined by (A 5). Here, Y is the complex 
argument 

y = d2af e-niI86, (6.37) 

and a is the coefficient in the wavenumber expansion (6.9). For convenience, we give 
in Appendix A approximations for large c, which can be found in Paris (1991). 

The solutions for B, and B, are now given by 

B, = -i -+- -+homogeneous solution [Lo 3: 
(6.38) 

and B,([, tJ - a2P( Y ) / a  Y 2  - O(E$, (6.39) 

cf. (5.34) and (6.28). To simplify the notation, we shall recombine the arbitrary 
complex constants as follows : 

(6.40) 

which must be determined by asymptotic matching. Afterwards, the surface dis- 
placement 7 becomes 

~ ( 6 ,  2, )  = [B  + &B, + aB, + . . .] eir-tKoc-it + C.C. 
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We now need the large-argument expansion (E-+ & co) of the inner surface 
displacement approximation. With reference to Appendix A, we note that for 
larg YI < in, the Pearcey function take the form 
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P( Y )  = P,( Y )  + Pl( Y ) ,  (6.42) 

where P, is algebraically decaying in 6 and 4 is exponentially decaying in 5. Hence for 
purposes of asymptotic matching, we need only consider Po, whose large-5 expansion 
is 

P,( Y )  - ( 5 ~ ) ;  e-"'/* exp (iia& {a-tl~l-f + o((-!)}. (6.43) 

Correspondingly, the asymptotic behaviour for 7, here expressed in terms of the 
outer variable 1, is 

~(1, t , )  - [c,,(t,)(+)' e-ni/sa-flll-i + c,(t,)(~rce);i sign (2) + o(d29l 
x exp {iE-'(KO 1 + :a1$)}. (6.44) 

When this outer expansion of the inner solution is compared with the inner 
expansion of the outer solution (6.13), it is clear that both the amplitude and the phase 
match to two significant terms. 

From (6.43) we see that higher-order terms from B are O ( E ~ : ) ,  higher-order terms 
from B, are O(&;), while terms from B, are O ( E ~ $ ) .  From this it follows that the one- 
term asymptotic form is valid for el < 111 < 1, and the two-term asymptotic form is 
valid for d < (11 < 1. 

The inner and outer solutions have an overlapping region of validity for their 
respective asymptotic expansions. The matching region for a one-term match is 
d < 111 < 1, and for a two-term match is €5 4 121 Q 1. Higher-order asymptotic 
matching is seen to give a smaller matching region, as is usually expected. 

Similarly to the case of a simple reflection point, we fix the time-dependent 
coefficients of the ray solution, (6.13), at  the time when the ray reaches the triple-root 
point. We can do this because the relative error introduced is small, less than the 
accuracy of the asymptotic match. Hence the time and phase integrals in equation 
(6.13) are to be evaluated with the upper limit set to 2 = 0. Asymptotic matching now 
gives c0(t,),  cl(t,) and b+(t,) in terms of the incident wave b-(t,) as follows 

We note that both coefficients for the inner solution have the same order in E ;  this 
indicates that the matching is consistent with respect to the ordering parameter. 

In summary, the outer solutions in regions I and 111, depicted in figure 5,  are still 
given by (6.13), and the inner solution, which now covers all of regions 11, IV and V, 
is given by (6.41) where the coefficients are given by (6.4SH6.47). 

Numerical results will be presented in $8. 
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The remark at the end of $ 5  is also appropriate here. For a successful asymptotic 
matching, we need to consider two terms in the inner approximation (6.21). The 
relative difference between consecutive terms in (6.21) is only d. To reduce the 
truncation error at and near the turning point, it would be desirable to include one 
more term, A,, B, a P"( Y). This is a very lengthy task. On the other hand, keeping the 
leading-order term in the outer approximation implies a much smaller error of O(E'). 

If the triple-root conditions are not exactly met, a theory that accounts for slight 
detuning is needed. This theory has been worked out, but the mathematical complexity 
increases enormously, and is not reported here. 

7. Remarks on existing experiments 
Pokazeyev & Rozenberg (1983) performed experiments for wavepackets on 

coflowing and counterflowing currents over a sloping bottom in a wave tank. The 
wavepackets typically contained 3-10 waves with the central frequency 2-1 1 Hz. The 
countercurrent varied from 0.04 m/s at the deep end to 0.2 m/s at the shallow end of 
a slope of length 0.8 m. From figure ( 5  c) in their paper, the current varied linearly with 
distance along the tank. Most of the cases discussed in their paper are for frequencies 
too high (> 2.4 Hz) for double reflection. Detailed time series records were not 
reported; amplitude plots were presented as if the wavetrains were uniform. Only one 
case, with frequency 2 Hz, corresponds to double reflection. However, for this 
frequency only one or two amplitude measurements were recorded between the two 
reflection points, which are separated by 6 cm, as can be estimated from figure 4. This 
lack of information precludes a meaningful comparison with our theory. 

In a subsequent paper, Badulin et al. (1983) performed wavepacket experiments for 
lower frequencies 1.5-3 Hz with a view to observing double reflection. The current 
velocity varied over the same range, 0.04-0.2m/s, but now over a slope of length 
1.6 m. Amplitude data were presented schematically as a continuous function of the 
horizontal distance for one frequency only (2 Hz). According to their description, the 
data were recorded at every 2.5 cm. For the given current gradient, the distance 
between the reflection points is about 12cm, which implies that there were 4 or 5 
measurements in this region. However, without knowledge of the time and positions 
of the measurements in the relatively narrow region where modulation is strong, a 
comparison with our theory cannot be made. 

In both experiments, the parameter e = (kL)-i is not small. For the two slope 
lengths, 0.8 and 1.6 m, the current can be estimated at aU/ax = 0.2, 0.1 s-'. Defining 
the long lengthscale of the current by 

1 1 au - - 
L u,,, ax7 

where U,,, is the average current over the slope, we estimate L = 0.6 and 1.2 m, 
respectively. It follows from (2.3) that for w/2n = 2 Hz, E = 0.32 and 0.23, respectively, 
which are not small. 

Viscous damping is also important in these experiments. Pokazeyev & Rozenberg 
(1983) measured the amplitude attenuation rates in zero and constant currents, and 
found the actual damping rate to be 2-3 times that of a semi-theoretical model 
combining viscous dissipation in the interior of the fluid, boundary-layer dissipation 
and losses near the free surface which is assumed to be an inextensible film. 

For pure gravity waves on a variable current, Lai, Long & Huang (1989) performed 
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similar experiments by focusing attention on the kinematics only. They confirmed the 
dispersion relation and the implied reflection, but no measurements on amplitude 
variations were reported. 

Clearly, a meaningful comparison between experiments and theory awaits more 
detailed measurements of amplitude and proper accounting for damping, detuning and 
nonlinearity. 

8. Numerical results for wavepackets 
We now describe the time evolution of wavepackets with two different central 

frequencies, one lower than and one equal to the frequency for the perfect triple turning 
point. 

For w/2n = 1.9 Hz, far lower than the triple-root frequency (2.4 Hz), there are two 
reflection points. The distance between them depends on the current gradient, which 
is chosen to be a constant small enough so that the reflection points are sufficiently far 
apart to be treated independently of each other. 

In all the plots, the peak amplitude at the left edge of the figure is normalized to 
unity. The locations of the turning points are indicated by vertical lines. In order to 
suggest possible experiments, the abscissa are labelled by the position in metres. 

Case I .  Large separation between two refection points 
Referring to figures 6 and 7, which cover the entire horizontal extent of the sloping 
bottom, the current velocity at the left edge is -0.19 m/s and at the right edge 
- 0.22 m/s. We assume the current gradient to be constant, C7L//ax = - 0.0075 s-', 
over a slope of 4 m length. The length L of normalization should be about L = 27 m, 
calculated according to (7.1). This gives the dimensionless parameters E = 0.050 and 
r = 0.0016. Recall that the dimensionless parameter E was defined as the ratio of the 
wavelength of a pure gravity wave of the given frequency on still water, to the current 
lengthscale L. Since the wavelength in the zone of reflections is always shorter than that 
of the pure gravity wave, the local ratio between the short and long scales is never 
larger than the one given above. The boundary condition at the left edge of each 
snapshot is (in non-dimensional variables) 

7( t2 )  = exp{-c(t2-T)2-iiE-2(fZ-T)},  

where c = 0.5. Starting with T = 0, the time interval between each snapshot is 
AT = 1.2. Alternatively, in physical coordinates, 

v( t * )  = exp{ -c*(t*- T* ) - iw(t* - T*)} ,  (8.2) 

where c* = 4.5 x lop4 s - ~  and T* increases in steps of about 40 s. 
To estimate crudely the effect of viscous damping, we introduce in the ray solutions 

the theoretical value accounting for internal dissipation only. Specifically, we use the 
model of Shyu & Phillips (1990), 

where x = 4 ~ - ~ v o ~ / g ~  is a dimensionless parameter. In the present case, the parameter 
is x = 0.028. 

We first show the development without damping in figure 6. The drastic reduction 
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FIGURE 6. Two well separated reflection points with frequency 1.9 Hz, current gradient -0.0075 s-l. 
No damping. The abscissa shows the position in metres, the ordinate shows normalized amplitude 
relative to peak unit amplitude at the left edge. 
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0 1 2 3 4 

x (m) 
FIGURE 8. The trajectory of the envelope peak for frequency 1.9 Hz and current gradient 

-0.0075 s-*. The abscissa shows position in metres, the ordinate shows elapsed time in seconds. 

Corresponding to figures 6 and 7, we plot in figure 8 the trajectory of the envelope 
peak as a function of time, according to the characteristic curve for the ray solution 
given by (4.27). We have labelled the abscissa in metres in accordance with the other 
figures, while the ordinate shows the elapsed time in seconds. It is evident that despite 
the reduction of wavelength the speed of the envelope remains comparable. 

If the characteristic time for viscous damping is calculated at the two reflection 
points as 7 = l/(vk2), we find 7 x 250 s at the (first) gravity reflection point and 
7 x 18 s at the (second) capillary reflection point. We now calculate the characteristic 
time, according to the ray theory, for the centre of the wavepacket to propagate 
through the inner regions. This is done by measuring on figure 8 the time it takes to 
pass through the inner region corresponding to setting the inner variable E = O( 1). Let 
U, and k, be the local values for the current and wavenumber at the reflection point. 
Then Lo = U,/(aU/ax)  and E ,  = l / ( k o  Lo)i are the local values for the long lengthscale 
and the ordering parameter. According to (5.16), the thickness of the inner region 
should then be Ax = l/(e!k0) = k;iLb. The characteristic times of propagation through 
the inner regions should therefore be 55 s at the gravity reflection point and 35 s at the 
capillary reflection point. Hence damping in the inner region of the gravity reflection 
point should be negligible as assumed, but considerable at the capillary reflection point. 
In this case, however, the capillary wave is completely damped out before it reaches the 
capillary reflection point, the error introduced by not accounting for dissipation in the 
second boundary layer is immaterial. 

Case 2. Moderate separation between two reflection points 
In figures 9-1 1 we keep the frequency at 1.9 Hz and the horizontal length of the slope 
at 4 my but change the current velocity at the left edge to -0.13 m/s and at the right 
edge to -0.26 m/s. The current gradient is now -0.033 s-l. This gives the 
dimensionless parameters E = 0.1 1 and r = 0.00 16. The boundary condition at the left 
edge of each snapshot is given by (8.1) and (8.2), where c = 0.15. Starting with T = 0, 
the time interval between each consecutive snapshot is AT = 1.6. In physical variables, 
c* x 3.1 x s-* and the time interval between each snapshot is approximately 1 1 s. 
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FIGURE 9. Double reflection with frequency 1.9 Hz and current gradient-0.033 s-l. No damping. 

Damping is added to the ray solutions in the same way as in case 1 ,  which gives the 
same damping parameter x. Because of the reduced separation, the wavepacket goes 
through the second reflection point before it  is damped out, as is apparent from figure 
10. 
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FIGURE 10. Double reflection with frequency 1.9 Hz and current gradient -0.033 s-l. 

Waves away from the reflection points are damped. 
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We also trace the peak of the envelope as a function of time in figure 11. After the 
first reflection, the envelope slows down considerably before being reflected the second 
time. We note that the characteristic times for viscous damping at  the two reflection 
points are the same as in the previous case. However the times for propagation through 
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FIGURE 11 .  The trajectory of the envelope peak for frequency 1.9 Hz and 

current gradient -0.033 s-'. 

the reflection point boundary layers are now 20 s and 12 s, respectively. The effect of 
damping is now negligible at the (first) gravity reflection point, while it is significant but 
not of dominating importance at  the capillary reflection point. 

Case 3. Coalescing reflection points (triple turning point) 
In this example, a wavepacket with the perfect triple turning point frequency (about 
2.35 Hz) is considered, as shown in figure 12, here without viscous damping. We have 
used a linear current flowing from right to left, with the current velocity at  the left edge 
being -0.15 m/s and at the right edge-0.21 m/s. The horizontal length across the 
figure is 3 m. The current gradient is -0.02 s-', and the long lengthscale should be 
about L = 9 m. This gives the dimensionless parameters 8 = 0.071 and r = 0.0037. The 
boundary condition at the left edge for consecutive snapshots is given by (8.1) and 
(8.2), where c = 0.08. Starting with T = -2.8, the time interval between consecutive 
snapshots is AT = 1.4. In physical coordinates, this corresponds to c* x 4.4 x lo-' s-* 
and the time between consecutive snapshots is approximately 19 s. 

As in the case of double reflection, the long incident gravity wave and the short 
transmitted capillary wave have speeds comparable to each other. However, it takes a 
considerable time for the wavepacket to go through the turning point. The trajectory 
of the peak of the wavepacket shown in figure 14 shows that the wavepacket comes 
almost to a standstill near the turning point. In physical units, the time spent in the 
inner region can be estimated at about 36 s, by using the inner scaling law (6.16) as 
before . 

The characteristic time for viscous damping at the triple-root point can be estimated 
at about 48 s. In this case, viscous damping effects should be considerable in the 
boundary layer. However the theory for damping is difficult here since the region is 
small and the spatial variation of the wavelength is fast. With these reservations, we 
present in figure 13 the results with damping imposed only to waves away from the 
turning point. Even with this partial account taken of dissipation, waves are effectively 
annihilated near the triple point. 
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x (m) 
FIGURE 12. The perfect triple turning point with current gradient -0.02 s-'. No damping. 

9. Conclusions 
We have developed a linearized theory of waves propagating on an opposing current 

of increasing strength. Attention is focused on the effect of capillarity which makes it 
possible for repeated reflection. This process enhances the role of dissipation by 
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FIGURE 13. The perfect triple turning point with current gradient -0.02 sl. 

Waves away from the turning point are damped. 

viscosity, which can damp out the waves completely without breaking. For a wavetrain 
of a given frequency, an increase of the current gradient narrows the region between 
the two reflection points. It is found that as the region gets narrower the wavepacket 
remains relatively longer within that region. 
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x (m) 
FIGURE 14. The trajectory of the envelope peak for the perfect triple turning point 

with current gradient -0.02 s-l. 

For comparison with future experiments, it may be desirable to include higher-order 
terms to allow moderate values of c. In addition nonlinear and viscous effects deserve 
future attention. The role of nonlinearity may be treated by pursuing further the 
physical implications of the cubic Schrodinger equations derived in form by Peregrine 
& Smith (1979). Since the zone of a simple reflection point or a triple turning point is 
a thin boundary layer where the wavelength varies relatively rapidly, the treatment of 
viscosity is not trivial. In view of the present study, the effects of viscosity may also be 
of overwhelming importance. 
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Appendix. Solution of the Pearcey equation 
Consider equation (6.35) 

d3B 2iK0u,U, 
t B  = 0, -_ 

dt3 r, 
where t is real, subject to the boundary conditions that B is bounded as t+ f GO. 

Let us introduce the coefficient of the wavenumber expansion (6.9) 

a = (- 2 ~ "  uo Ul/@, (A 2) 

and y = d/faf e-nilst. (A 3) 

Equation (A 1) then becomes 

:YB = 0. 
d3B 
d Y3 
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The solution of (A 4) is a special case of the Pearcey function (Pearcey 1946), 

which has been discussed by Stamnes (1986) and Paris (1991). The integral above is a 
special case of Paris' equation (2.2) (scaled by a factor of exp(ni/8)). 

For 6 > 0, we have arg Y = -in. From (2.11) in Paris, we get 

P( Y) - P,+ PI for larg YI .c in, (A 6) 

tm = 4-$exp{:i(in+arg ~)+$nirn).  

where Pm is the contribution from the saddle point at 

For large Y, the general expression for Pm is (cf. Paris' (2.14)) 

y-+e-ni16-2nim13 - 1 4 ;  y-' 3e nil6+2nim/3 + O( Y-i)}. (A 7) 
36 

For ease of reference, we shall display the first two terms of the derivative, 

+ O( Y-')}. (A 8) 4-f eni/2 - 1 y-f e-ni/6-2nim/3 

36 

For 6 real, P, represents an algebraically damped oscillation, while 4 is exponentially 
damped. Hence for purposes of asymptotic matching, only P, is needed. 
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